skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weigandt, Anna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chow rings of flag varieties have bases of Schubert cycles \sigma_u, indexed by permutations. A major problem of algebraic combinatorics is to give a positive combinatorial formula for the structure constants of this basis. The celebrated Littlewood-Richardson rules solve this problem for special products \sigma_u \cdot \sigma_v where u and v are p-Grassmannian permutations. Building on work of Wyser, we introduce backstable clans to prove such a rule for the problem of computing the product \sigma_u \cdot \sigma_v when u is p-inverse Grassmannian and v is q-inverse Grassmannian. By establishing several new families of linear relations among structure constants, we further extend this result to obtain a positive combinatorial rule for \sigma_u \cdot \sigma_v in the case that u is covered in weak Bruhat order by a p-inverse Grassmannian permutation and v is a q-inverse Grassmannian permutation. 
    more » « less
    Free, publicly-accessible full text available December 3, 2025
  2. Matrix Schubert varieties are affine varieties arising in the Schubert calculus of the complete flag variety. We give a formula for the Castelnuovo–Mumford regularity of matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her proposed strategy of studying the highest-degree homogeneous parts of Grothendieck polynomials, which we call Castelnuovo–Mumford polynomials. In addition to the regularity formula, we obtain formulas for the degrees of all Castelnuovo–Mumford polynomials and for their leading terms, as well as a complete description of when two Castelnuovo–Mumford polynomials agree up to scalar multiple. The degree of the Grothendieck polynomial is a new permutation statistic which we call the Rajchgot index; we develop the properties of Rajchgot index and relate it to major index and to weak order. 
    more » « less
  3. We give an explicit formula for the degree of the Grothendieck polynomial of a Grassmannian permutation and a closely related formula for the Castelnuovo-Mumford regularity of the Schubert determinantal ideal of a Grassmannian permutation. We then provide a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-Seshadri on a formula for regularities of standard open patches of particular Grassmannian Schubert varieties and show that our work gives rise to an alternate explicit formula in these cases. We end with a new conjecture on the regularities of standard open patches ofarbitraryGrassmannian Schubert varieties. 
    more » « less